The Fairy-Land of Science Lecture 3 – Part 2

Lecture III    The Aerial Ocean in Which We Live   Continued…

Even a short distance from the earth, however, at the top of a high mountain, the air becomes lighter, because it has less weight of atmosphere above it, and people who go up in balloons often have great difficulty in breathing, because the air is so thin and light. In 1804 a Frenchman, named Gay-Lussac, went up four miles and a half in a balloon, and brought down some air; and he found that it was much less heavy than the same quantity of air taken close down to the earth, showing that it was much thinner, or rarer, as it is called;* and when, in 1862, Mr. Glaisher and Mr. Coxwell went up five miles and a half, Mr. Glaisher’s veins began to swell, and his head grew dizzy, and he fainted. The air was too thin for him to breathe enough in at a time, and it did not press heavily enough on the drums of his ears and the veins of his body. He would have died if Mr. Coxwell had not quickly let off some of the gas in the balloon, so that it sank down into denser air. (*100 cubic inches near the earth weighed 31 grains, while the same quantity taken at four and a half miles up in the air weighed only 12 grains, or two- fifths of the weight.)

And now comes another very interesting question. If the air gets less and less dense as it is farther from the earth, where does it stop altogether? We cannot go up to find out, because we should die long before we reached the limit; and for a long time we had to guess about how high the atmosphere probably was, and it was generally supposed not to be more than fifty miles. But lately, some curious bodies, which we should have never suspected would be useful to us in this way, have let us into the secret of the height of the atmosphere. These bodies are the meteors, or falling stars.

Most people, at one time or another, have seen what looks like a star shoot right across the sky, and disappear. On a clear starlight night you may often see one or more of these bright lights flash through the air; for one falls on an average in every twenty minutes, and on the nights of August 9th and November 13th there are numbers in one part of the sky. These bodies are not really stars; they are simply stones or lumps of metal flying through the air, and taking fire by clashing against the atoms of oxygen in it. There are great numbers of these masses moving round and round the sun, and when our earth comes across their path, as it does especially in August and November, they dash with such tremendous force through the atmosphere that they grow white-hot, and give out light, and then disappear, melted into vapour. Every now and then one falls to the earth before it is all melted away, and thus we learn that these stones contain tin, iron, sulphur, phosphorus, and other substances.

It is while these bodies are burning that they look to us like falling stars, and when we see them we know that hey must be dashing against our atmosphere. Now if two people stand a certain known distance, say fifty miles, apart on the earth and observe these meteors and the direction in which they each see them fall, they can calculate (by means of the angle between the two directions) how high they are above them when they first see them, and at that moment they must have struck against the atmosphere, and even travelled some way through it, to become white-hot. In this way we have learnt that meteors burst into light at least 100 miles above the surface of the earth, and so the atmosphere must be more than 100 miles high.

Our next question is as to the weight of our aerial ocean. You will easily understand 3 part 2 all this airthat all this air weighing down upon the earth must be very heavy, even though it grows lighter as it ascends. The atmosphere does, in fact, weigh down upon land at the level of the sea as much as if a 15-pound weight were put upon every square inch of land. This little piece of linen paper, which I am holding up, measures exactly a square inch, and as it lies on the table, it is bearing a weight of 15 lbs. on its surface. But how, then, comes it that I can lift it so easily? Why am I not conscious of the weight?

To understand this you must give all your attention, for it is important and at first not very easy to grasp. you must remember, in the first place, that the air is heavy because it is attracted to the earth, and in the second place, that since air is elastic all the atoms of it are pushing upwards against this gravitation. And so, at any point in air, as for instance the place where the paper now is as I hold it up, I feel no pressure because exactly as much as gravitation is pulling the air down, so much elasticity is resisting and pushing it up. So the pressure is equal upwards, downwards, and on all sides, and I can move the paper with equal ease any way.

Even if I lay the paper on the table this is still true, because there is always some air under it. If, however, I could get the air quite away from one side of the paper, then the pressure on the other side would show itself. I can do this by simply wetting the paper and letting it fall on the table, and the water will prevent any air from getting under it. Now see! if I try to lift it by the thread in the middle, I have great difficulty, because the whole 15 pounds’ weight of the atmosphere is pressing it down. A still better way of making the experiment is with a piece of leather, such as the boys often amuse themselves with in the streets. This piece of leather has been well soaked. I drop it on the floor and see! it requires all my strength to pull it up. (In fastening the string to the leather the hole must be very small and the know as flat as possible, and it is even well to put a small piece of kid under the knot. When I first made this experiment, not having taken these precautions, it did not succeed well, owing to air getting in through the hole.) I now drop it on this stone weight, 3 part 2 I now drop irand so heavily is it pressed down upon it by the atmosphere that I can lift the weight without its breaking away from it.

Have you ever tried to pick limpets off a rock? If so, you know how tight they cling. the limpet clings to the rock just in the same way as this leather does to the stone; the little animal exhausts the air inside it’s shell, and then it is pressed against the rock by the whole weight of the air above.

Perhaps you will wonder how it is that if we have a weight of 15 lbs. pressing on every square inch of our bodies, it does not crush us. And, indeed, it amounts on the whole to a weight of about 15 tons upon the body of a grown man. It would crush us if it were not that there are gases and fluids inside our bodies which press outwards and balance the weight so that we do not feel it at all.

This is why Mr. Glaisher’s veins swelled and he grew giddy in thin air. The gases and fluids inside his body were pressing outwards as much as when he was below, but the air outside did not press so heavily, and so all the natural condition of his body was disturbed.

I hope we now realize how heavily the air presses down upon our earth, but it is equally necessary to understand how, being elastic, it also presses upwards; and we can prove this by a simple experiment. I fill this tumbler with water, and keeping a piece of card firmly pressed against it, I turn the whole upside- down. When I now 3 part 1 when I nowtake my hand away you would naturally expect the card to fall, and the water to be spilt. But no! the card remains as if glued to the tumbler, kept there entirely by the air pressing upwards against it. (The engraver has drawn the tumbler only half full of water. The experiment will succeed quite as well in this way if the tumbler be turned over quickly, so that part of the air escapes between the tumbler and the card, and therefore the space above the water is occupied by air less dense than that outside.)

And now we are almost prepared to understand how we can weigh the invisible air. One more experiment first. I have here what is called a U tube, because it is shaped like a large U. I pour some water in it till it is about half full, and you will notice that the water stands at the same height in both arms of the tube, because the air presses on both surfaces alike. Putting my thumb on one end I tilt the tube carefully, so as to make the water run up to the end of one arm, and then turn it back again. But the water does not now return to its even position, it remains up in the arm on which my thumb rests. Why is this? Because my thumb keeps back the air from pressing at that end, and the whole weight of the atmosphere rests on the 3 part 1 weight by makingwater at the other end. And so we learn that not only has the atmosphere real weight, but we can see the effects of this weight by making it balance a column of water or any other liquid. In the case of the wetted leather we felt the weight of the air, here we see its effects.

Go to Lecture 3 – Part 3 here.